1. CLIFFORD ALGEBRAS
Throughout this text, let & denote the field R or C.

Definition 1.1. The fensor algebra on K" is defined to be the algebra
TK") =X I (K")=K®K' ¢ K"QK"®---
whose multiplication is given by linearly extending the canonical map
TYHK™) x T™(K™) — T“"™(K™).
Note T'(K™) is associative with multiplicative identity 1 € K = T°(K™) C T(K").
Definition 1.2. The Clifford Algebra on K" is defined to be the quotient of algebras
CI(K™)=T(K")/I(K")
where I(K™) is the two-sided ideal generated by elements of form
v@uv+<v,u>1eT(K") with ve K"
Here <, > denotes the usual inner product on K™, also known as the dot product.

Note CI(K™) has the multiplicative identity, [1] € [K] C CI(K™). We will denote [1]
with 1.

Lemma 1.1. There is a natural embedding of K™ = T*(K™) into CI(K™).

Proof. 1t is sufficient to show K" N I(K") = {0}. First an element in 7'(K™) is said to
be of pure degree s if it is contained in 7°(K") C T(K™). Let ¢ € K™ N I(K™). Since
© € I(K™) we may write it as a finite sum

@zZai®('z)i®vi+<vi,vi >)®bl

where the a; and b; are each of pure degree. Since ¢ € K™ = T'(K™), we have

Z ay @ (vy @vy) @by =0

il

where the above sum is taken over indices where each dega; + degb; is maximal. By
contraction with <, >, we also have

Zai/ < Vir, Uy > by = 0.
il

Hence
Zai/ & (Ui’ R Vir+ < Uy, Uy >) & bi/ = 0.

Z‘/

and proceeding inductively, we conclude ¢ = 0. U
1
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Lemma 1.2. Let {ey,- - , e,} denote an orthonormal basis for K". Then CI(K™) is gen-
erated as an algebra by the e; subject to the relations:

2 _ —
e; =—1 and eie; = —eje;

for each i and j # 1.
It follows CI(K™) is a 2"-dimensional vector space with basis

{1}U{€i1€i2"'eir |1§i1<i2<--~ir§n}.
O

For the reader’s convenience, we recall the definition of the complexification of a real
algebra.

Definition 1.3. If A is an algebra over R then its complexification is the algebra A ®r C
endowed with the following complex scalar multiplication map. Foreachv® z € A ®@g C
and A € C, we define \(v ® 2) = v ® (\2).

Lemma 1.3. The complexification of CI(R"), CI(R™) ® C, is isomorphic as an algebra to
ClL(C™).
Proof. Define an algebra isomorphism CI(R") ® C — CI(C") by
v A= A e Ct C ClC)
for each v € R C CI(R") and X € C.

Lemma 1.4. We can construct an algebra isomorphism:
o Cl(CY) — Mat(C, 4).

Proof. Let {e1,--- ,e,} denote the usual orthonormal basis for C* C CI(C*). We can
define an algebra isomorphism CI(C*) — Mat(2,C) ® Mat(2,C) as follows.

1 0 0 = 0 1 0 =2
€1f—>[0 —i}@){—i()} 62*—>{_1 O}@{_i 0}

10 0 1 10 v 0
solovle[To] e i vels 4
By composing this map with the Kronecker map, we obtain the desired algebra isomor-

phism, p. U

Using the map 4 from the previous Lemma, we have an action of CI(C*) on C* which
we will refer to as Clifford multiplication . We will denote this action by “.”.
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Now we will discuss the splittings of Clifford algebras. First note by Lemma 1.2, the
map o : K™ — K™ given by a(v) = —v extends to an algebra automorphism of CI(K™).
« induces the splitting

CI(K™) =Cly(K"™) & Cli(K™)
where Cl;(K™) = {¢ € CI(K™) | a(p) = (—1)¢}. To verify this is indeed a splitting note
each Cl;(K™) is a linear subspace, span{Cly(K"), Cl;(K™)} = CI(K™) as each element
of the vector space basis {1} U {e; e;,---€;. | 1 <iy < iy < ---i, < n} is contained in
one of the C;(K™), and Cly(K™) N Cly(K™) = 0 since if p € Clo(K™) N Cly(K™) then
¢ = —@ implies ¢ = 0 as K has no nontrival torsion.

The volume element of C'1(R™) (oriented by the usual orientation of R") is defined to be
w = ej ---e, where the e; are an orthonormal basis of R"™ with the usual orientation. To
see this is well-defined, suppose €], - - - , e}, is another oriented orthonormal basis. Then
each e; = >, g;;e; for some g = (g;;) € SO(n). Hence from Lemma 1.2

e) e, =det(gle; e, =€ ep.
In the case w? = 1, we have the splitting
CI(R™) = CI*(R"™) & CI~ (R")
where CI*(R") = 7*CI(R") with 7* = 1(1 & w) (note we use this notation since left
multiplication by ¥ is a projection onto CI*(R")) . To see this is a splitting, observe each

CI1*(R") is a linear subspace, span{CIT(R"), CI~(R")} = CI(K™) since we can write
eachp € Cl(R") as o = 7T o+7m ¢, and CIT(R")NCI~ (R™) = O sinceif 77y = 7~ o,

using the facts 757 = 7¥ and 7¥7T = 0, we obtain 0 = 7~ ¢,. Note for each e € R,
we have e = e1 (1 Fw).
Lemma 1.5.

CIR 2HaoH
Proof. Define an algebra isomorphism H ¢ H — CI(R?) by

i D0~ %(6162 —e3) JB0— %(6263 —e1)

0B +— %(6162 + 63) 0 @] — %(6263 + 61)
where the e; are the usual oriented orthonormal basis for R* C C1(R?). U
Note this map sends H ¢ 0 to C17(R?) and 0 ¢ H to CI~(R?).



Lemma 1.6.
CI(K™ 1) = Cly(K™)

Proof. We can define an algebra isomorphism CI(K"~ ') — Clo(K™) by
€; — €;ep

where the ¢; on the left are the usual orthonormal basis for K"~ C CI(K™ ') and the ¢;
on the right are the usual orthonormal basis for K C CI(K™).
U

Note the isomorphism from the previous Lemma sends the w of CI(R?) to the w of
CI(R?) so it preserves the corresponding splittings, i.e. CI*(R?) — CIT(R?).

Similarly C1(C") has a complex volume element (oriented by the usual orientation of
[n(n=1) . .
R™), we z[ 2 ]el ---¢, where the e; are an oriented orthonormal basis for R" =

R®0)®---@® (R&0) C C* C CI(C™). Note w2 = 1 so it induces a splitting
CI(C™) =ClH(C") e Cl(C™)
where CI(C") = 7 CI(C™) with 72 = (1 £ we).
Finally note Clifford multiplication induces a splitting
C'=(CH" & (CY"

where (C*)* = 72 - C*.

Lemma 1.7. dim(C*)* = 2 and Clifford multiplication induces vector space isomor-
phisms:

C* — Home((CHT,(CH7)
C4 = Home((CY), (CH™).
Proof. First define a linear maps ¢ : C* — Homc((CH)E, (CH)F) by e = (v e-v)
where e € C* C CI(C*) and v € (C*)* c CL
To see this is well-defined, choose v € (C*)* and e € C* C CI(C*). Then
e-v=eng -v=mge-ve (CH.
For any e € C* C CI(C*) with < e,e ># 0 and v € (C*)%,

px(e)opi(e)(v) =—<ee>wv
is an automorphism of (C*)* hence dim(C*)* = dim(C*)~. Then since dim(C*)" +
dim(C*)~ = 4, dim(C*)* = 2.
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Now we will show ¢ are injective. First suppose ¢, (e¢) = 0 for some e € C* C CI(C?)
then e - v = 0 for each v € (C*)*. It follows erl - v' = 0 for each ' € C*. Since
Clifford multiplication is faithful, we have eﬂg = 0. Hence mze = 0. We may write
e = c1eq + coes + c3e3 + cyeq Where the e; are the usual orthonormal basis for C* and the
¢; are constants in C. Then the previous equation may be written

e (cre1 + coeg + czes + caeq) = 0.

If we distribute, this turns into
5(0161 + o9 + c3e3 + cyeq + Cresezeq — caerezey + czeresey — cyeqeses) = 0.
This is a linear combination of distinct basis vectors so each ¢; = 0 and hence e = 0.
Proving ¢_ is injective can be done similarly.
Therefore since dim Homc((C*)*, (C*)T) = 4, ¢ are isomorphisms.
O

Using this Lemma, we can define maps C' : C* ® (C*)* — (C*)¥ which we will also
refer to as Clifford multiplication.

Lemma 1.8. Clifford multiplication induces algebra isomorphisms
CIF(C*) — End(C*)*.

Proof. Define algebra isomorphisms ¢ : CIF(C*) — End(CH)* by ¢ +— (v = ¢ - v)
where ¢ € CI5(C*) and v € (C*)* C C*. Since ¢ = = for all p € CIF(C?), this is
well-defined.

To see ¢F are injective suppose ¢ - v = 0 for all v € (C*)*. Then ¢ - & - v/ = 0 for
each v’ € C*. Because we commutes with each element in Cly(C?*), we have ¢ - v/ = 0
and since Clifford multiplication is faithful, ¢ = 0.

Then since dim CI3(C*) = dim End(C*)* = 4, ¢ are vector space isomorphisms.
Additionally they are algebra isomorphisms since for each o € CIF(C?),

D+(P1p2) (V) = P12 - v =1+ (P2 - V) = P (p1) © P+ (p2)(v).



2. EXTERIOR ALGEBRAS
First we define the vector space of alternating tensors of degree r on K" to be
/\T(K’n) _ {90 e TT‘(K") ‘ S0<Ul>"' LU, 71}].’...1}7”) — _@(Ulf" ,Vjy e e 7Ui>"'vr)}-
We have the alternating projection map Alt : T"(K™) — A"(K™) given by
1
pon ) = 3 sgn(0)plvn, o)

" 0€ES,
where .S, denotes the set of permutations of r elements.
Definition 2.1. The exterior algebra on K" is defined to be the algebra
NE") = @2 N (K") = Ko K"® A(K") @ N(K") @ - -
whose multiplication A is given by linearly extending the map A‘(K™) @ A™(K™) —
A (K™) defined by
(¢ +

|
.00 T dip @ )

Note A(K™) is an associative algebra with multiplicative identity 1 € K = A°(K™) C
A(K™).
Lemma 2.1. Let {ey,--- ,e,} denote a basis for K". Then N(K") is generated as an
algebra by the e; and 1. It follows N(K™) is a 2"-dimensional vector space with basis
{1}U{€i1/\ei2/\"'/\eir ’ 1 <4 <9 < v vty §n}

Corollary 2.1. A(K™) and CI(K™) are naturally isomorphic as vector spaces.

We define the Hodge star operator (induced by the usual orientation and the usual inner
product <, >) to be the map
*: A2(R™) — A%(R™)
given by *(e; Ae;) = ey, A e, where the e; are an oriented orthonormal basis and (3, j, k, £)
is an even permutation of {1,2, 3,4}. Hence

e1Neg— ez /ey erNegr— —eg N\ ey
e1\Negt— eg N\ eg ey Negt— e N\ey
o Negt— —eg Neg egNeg— e N\ey

Lemma 2.2. The Hodge star operator is well-defined. U
* 1 A2(R") — A?(R") induces a splitting
A(RY) = A~ (RY) @ AT(RY)
where AT(R?) = {p € A2(R?) | xp = £}
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Lemma 2.3. The natural isomorphism from Corollary 2.1 induces a vector space isomor-
phism between the subspaces

(Cl(RY ® C)* and niC @ (AT(RY) ® C).
Proof. Let {ey,--- ,e4} denote an oriented orthonormal basis for R* = R* @ 1. Notice
(Cly(R*) @ C)* has the basis
{WE; €162 + €364, €163 — €264, €164 + 6263}

so we see (Clo(RY) @ C)" = nfC o AT(R*) @ C. O

3. SPIN(N) AND SPINC(N)

Now we will define the Lie groups Spin(n) and Spin®(n). Let CI*(R™) denote the
multiplicative group of units in C/(R"). We define Pin(n) to be the subgroup of CI* (R™)
generated by elements v € R C CI(R") with < v,v >= 1. We define Spin(n) to be the
intersection of Pin(n) and Cly(R").

Lemma 3.1. We have an isomorphism SU (2) x SU(2) — Spin(4) where the splitting on
the left corresponds with the splitting Spin(4) = Spin(4)* x Spin(4)~.

Proof. Recall we have algebra isomorphisms
H @ H — CI(R?) — Clo(R*)

where the first map is the isomorphism from Lemma 1.5 and the second map is the iso-
morphism from Lemma 1.6.

If we identify H with R*, the group of unit quaternions is identified with S® C R*
and is isomorphic to SU(2). Then by restricting the composition of the above maps to
S3 x S3 C H @ H, we obtain an isomorphism

SU(2) x SU(2) — Spin(4).

This composition preserves the desired splittings as each of the isomorphisms above
preserves its own corresponding splittings.
0

We define Spin‘(n) to be the multiplicative group of units [Spin(n)x S| C CI(R")®C.
Observe by using the algebra isomorphism from Lemma 1.3 , we can consider Spin‘(n)
to be a multiplicative group of units contained in CI(C?).

Lemma 3.2. Spin¢(n) = Spin(n) x S'/{£(1,1)}.
Proof. First we have the natural surjective group homomorphism

Spin(n) x S* < [Spin(n) x S'].
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Elements of the kernel of this map are of form (cl,c™!) where c € STNR = {-1,1}
AND cl € Spin(n). To see —1 € Spin(n) = Pin(n) N Cly(R™), first =1 € Pin(n)
since e;e; = —1 and —1 € Cly(R™) since

a(—1) = alere)) = aler)aler) = (—er)(—e1) = e1e; = —1.
Thus the kernel of our map is {4-(1, 1)} so by the first isomorphism theorem,
Spin‘(n) = Spin(n) x S*/{%(1,1)}.

From this Lemma and Lemma 3.1, we obtain an isomorphism
Spin‘(4) = SU(2) x SU(2) x S*/{£(I,1,1)}.

Note that under this isomorphism, Spin®(4)* @ nz C CI(C*) is identified with the sub-
group [SU(2) x I x S'] € SU(2) x SU(2) x S'/{£(I,1,1)} and Spin°(4)” & nl is
identified with the subgroup [I x SU(2) x S1].

Lemma 3.3. We have a group isomorphism
{(A,B) € U(2) x U(2) | det(A) = det(B)} — Spin°(4) C CI(C*)

where the splitting of {(A, B) € U(2) x U(2) | det(A) = det(B)} corresponds with the
splitting Spin©(4) = Spin®(4)* x Spin®(4)~.

Proof. First there is an isomorphism
{(A,B) € U(2) x U(2) | det(A) =det(B)} — SU(2) x SU(2) x S*/{£(I,1,1)}
defined by
amelaly S ey S|
where A2 = det A. Note since
(A, B,\)] = [(=A,—B,=\)] in SU(2) x SU(2) x S*/{£(I,1,1)},

our map is the same for each of the two choices of A and hence is well-defined.
The rest follows from the comments after Lemma 3.2.
g

The adjoint representation of Spin(n) is the map Ad : Spin(n) — Aut(CI(R™)) de-
fined by ¢ — (y — pye~!). Recall
Pin(n) ={vy---v. € CI(R") | v; € R" with < v;,v; >= 1}

so we see Ad,(v) € R" for each ¢ € Spin(n) C Pin(n) and v € R". Hence we can
restrict the range to obtain a homomorphism Ad : Spin(n) — GL(n) . In fact:



Lemma 3.4. Ad induces a group homomorphism,
¢ : Spin(n) — SO(n)

which is a double covering map. For n > 2, this is the universal double cover (up to
isomorphism). U

For Spin‘(n), we can define a double-covering map of SO(n) x U(1) as follows. Let
& . Spinf(n) — SO(n) x U(1) be the homomorphism [(¢, \)] — (£(p), A?). Also
observe the map ¢ : Spin(n) — SO(n) induces the homomorphism & : Spin®(n) —
SO(n) given by [(¢, A)] — &(¢). The kernel of this map is Z(Spin¢(n)) = S.

Lemma 3.5.
Spinf(n) = Spin(n) xg S' = Spin(n) x SY/{(AL,AY) | A e ST
Proof. Define an isomorphism by ¢ — [p, 1]. To see this is onto observe [, \] = [Ap, 1]

for each ¢ € Spin°(n) and A € S'. To see injectivity suppose [¢1,1] = [p2, 1] for
some ¢; € Spin(n). Then (¢1,1) = (Aps, A71) for some A € S'. Hence A = 1 and
P1 = Pa. Il

4. SPINC STRUCTURES

Given an orientable manifold X, recall a choice of orientation and Riemannian metric
reduces the structure group of 7'X to SO(n) C GL(n) hence we obtain a frame bundle

Psomn).

Definition 4.1. A Spin®-structure for an oriented Riemannian n-manifold X is a principal
Spin®(n)-bundle Pspineny — X together with a bundle map Psyinc(n) — Pso(n) that is
¢: Spin®(n) — SO(n) fibrewise.

The determinant line bundle of a Spin®-structure Pgpineny — Psom) is defined to be
the complex line bundle L = Pgpjpe(n) Xdet C wWhere det : Spin®(n) — U(1) is given by
[(0, V)] = A%,

Now we will restrict our attention to the four-dimensional case. Using the Clifford
multiplication map y : CI(C*) — Mat(C, 4) from Lemma 1.4, the complex spinor bundle
associated to i is defined to be the complex vector bundle W' = Pgipe(n) X, C*.

We may split W as W = W+ @ W~ where

W:t = PSpinC(4) X#:t (C4)i

where ;£ (o) = ,u(ﬁfcto). W is called the positive complex spinor bundle and W~ is
called the negative complex spinor bundle. From Lemma 3.3, both W* have structure

group U (2).
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Now we will show H?(X; Z) has an action on Spin®(X) (the set of isomorphism classes
of Spin‘-structures on X). For E € H?(X;Z), let Py 1y denote the corresponding princi-
pal U(1)-bundle. We can define a new Spin°-structure { ® E as follows. Consider

Pspiney Xv) Pua) = Pspinea) X PU(l)/ ~

where (¢,y) ~ (¢ - A,y - A7!) for each A € U(1). On the left, U(1) is identified with
Z(Spin®(n)) in our usual way. From Lemma 3.5, this is a principal Spin®(n) bundle. We
can define our bundle map Pspines) X1y Puay = Psom) by [@, y] = £(9).

Finally observe the induced map det : Spin(n) xg1 S — St is given by [p ® z, \| —
2?2, We can write this as det = det; dety dety where det; : Spin(n) x g1 S* — ST are
given by det; ([p @ z, \]) = 2? and dety([¢ ® 2z, \]) = . Hence

(Pspinea) Xv) Puy) Xaet C = (Pspinca) Xv(1) Pu1)) Xaet COC® C
= ((Pspinc(a) Xv() Puy) Xaen, C)@
((Pspine(a) (1) Puay) Xdets C)®
((Pspinc(4) Xy(1) PU(1)) X dety C)
= LOEQFE

So we see our action has the following effect on determinant line bundles: L — L + 2F.

Lemma 4.1. The above action is free and transitive. O

5. CLIFFORD BUNDLES

Definition S.1. Given a oriented Riemannian n-manifold X with frame bundle Pso(y),
we define the Clifford bundle of X as CI(X) = Psowm) Xsom) CI(R™). We also have the
complexified Clifford bundle Cl1(X) ® C = Psom) Xsowm) (CI(R™) ® C).

Let X be a oriented Riemannian n-manifold with frame bundle Pso(,) and Spin®-
structure £ : Pspine(n) — Pso(n)-

Lemma 5.1. The map § : Pspine(n) — Pson) induces a bundle isomorphism:
Pspinen) X44 CLR") ® C = CI(X) ® C
where Ad : Spin®(n) — Aut(CI(R™) @ C) is given by
PRAA (YO v = oy XA = pyp Tt ® ),
Proof. Define a map
Pspinen) X CI(R") @ C = Pso(m) x CI(R™) ® C

by (y,v) — (£(y),v). For o ® A € Spin®(n) and (y,v ® 2) € Pspinen) X CI(R™) @ C,
we have

(- ' @A Lot ®2) = (E(y) - E(e) T E(p)v ® 2)
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so our map induces a bundle map
& ¢ Popine(n) X4a CI(R*) ® C — CI(X) ® C.
Surjectivity follows from the fact that £ is onto. To see £’ is injective suppose

[y, 01 @ z1]) = [y, v2 @ 22).
Then [(£(y1),v1 @ 21)] = [((y2), v2 ® 22)] and hence

(&) - €)1 €)1 @ 21) = (E(y2), v2 ® 22)

for some ¢ ® A € Spin(n). Since Spin®(n) acts transitively on the fibres of Pgyipe(n), We
have y; - (¢’ @ X)~! = y, for some ¢’ ® X € Spin°(4). Observe

§y2) = & - (¢ @ N) 1) =&(w) - ()
so since SO(n) acts freely on the fibres of Pso(,), it follows £(¢’) = () and hence

(1 (@ @N) L ()01 ® 21) = (2,02 ® 22)

and therefore ¢’ is a bundle isomorphism.
O

Now additionally suppose X is 4-dimensional with complex spinor bundle W = W+ &
W=. We’ll show C1(X) ® C has an action called Clifford multiplication on W. Define a
map

C: PSpinC(4) X (Cl((C4) & (C4) — PSme(4) X (C4
by (¢, ® v) — (g, - v) where - denotes Clifford multiplication. For g € Spin‘(4), we

have

1

Clag ", 999 ' @g-v)=(q9" " 909" - g-v)=(q9 ", 9 (p-v))

so this induces a bundle map
C:ClX)eC)eW W

which we will refer to as the Clifford multiplication map yet again.
Finally from Lemma 1.1, CI(X') contains the subbundle

Psow) X so@ R* C Psoy Xsow) CLR*) = CI(X)

which is canonically isomorphic to 7X. It follows C(X) ® C contains a subbundle
canonically isomorphic to 7' X & C. Thus using the canonical identification of tangent and
cotangent bundles, we can define a map

C:(T"XeC)eW = W.
As aresult of Lemma 1.7 , we have the restrictions

C(T"X ®C)oW* — W,
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