1. CLIFFORD ALGEBRAS

Throughout this text, let K denote the field \mathbb{R} or \mathbb{C} .

Definition 1.1. The *tensor algebra on* K^n is defined to be the algebra

$$T(K^n) = \bigoplus_{r=0}^{\infty} T^r(K^n) = K \oplus K^n \oplus K^n \otimes K^n \oplus \cdots$$

whose multiplication is given by linearly extending the canonical map

$$T^{\ell}(K^n) \times T^m(K^n) \to T^{\ell+m}(K^n).$$

Note $T(K^n)$ is associative with multiplicative identity $1 \in K = T^0(K^n) \subset T(K^n)$.

Definition 1.2. The Clifford Algebra on K^n is defined to be the quotient of algebras

$$Cl(K^n) = T(K^n)/I(K^n)$$

where $I(K^n)$ is the two-sided ideal generated by elements of form

$$v \otimes v + \langle v, v \rangle 1 \in T(K^n)$$
 with $v \in K^n$.

Here <, > denotes the usual inner product on K^n , also known as the dot product.

Note $\mathcal{C}l(K^n)$ has the multiplicative identity, $[1] \in [K] \subset \mathcal{C}l(K^n)$. We will denote [1] with 1.

Lemma 1.1. There is a natural embedding of $K^n = T^1(K^n)$ into $Cl(K^n)$.

Proof. It is sufficient to show $K^n \cap I(K^n) = \{0\}$. First an element in $T(K^n)$ is said to be of *pure degree* s if it is contained in $T^s(K^n) \subset T(K^n)$. Let $\varphi \in K^n \cap I(K^n)$. Since $\varphi \in I(K^n)$ we may write it as a finite sum

$$\varphi = \sum_{i} a_i \otimes (v_i \otimes v_i + \langle v_i, v_i \rangle) \otimes b_i$$

where the a_i and b_i are each of pure degree. Since $\varphi \in K^n = T^1(K^n)$, we have

$$\sum_{i'} a_{i'} \otimes (v_{i'} \otimes v_{i'}) \otimes b_{i'} = 0$$

where the above sum is taken over indices where each $\deg a_{i'} + \deg b_{i'}$ is maximal. By contraction with <,>, we also have

$$\sum_{i'} a_{i'} < v_{i'}, v_{i'} > b_{i'} = 0.$$

Hence

$$\sum_{i'} a_{i'} \otimes (v_{i'} \otimes v_{i'} + \langle v_{i'}, v_{i'} \rangle) \otimes b_{i'} = 0.$$

and proceeding inductively, we conclude $\varphi = 0$.

Lemma 1.2. Let $\{e_1, \dots, e_n\}$ denote an orthonormal basis for K^n . Then $Cl(K^n)$ is generated as an algebra by the e_i subject to the relations:

$$e_i^2 = -1$$
 and $e_i e_j = -e_j e_i$

for each i and $j \neq i$.

It follows $Cl(K^n)$ is a 2^n -dimensional vector space with basis

$$\{1\} \cup \{e_{i_1}e_{i_2}\cdots e_{i_r} \mid 1 \le i_1 < i_2 < \cdots i_r \le n\}.$$

For the reader's convenience, we recall the definition of the complexification of a real algebra.

Definition 1.3. If A is an algebra over \mathbb{R} then its complexification is the algebra $A \otimes_{\mathbb{R}} \mathbb{C}$ endowed with the following complex scalar multiplication map. For each $v \otimes z \in A \otimes_{\mathbb{R}} \mathbb{C}$ and $\lambda \in \mathbb{C}$, we define $\lambda(v \otimes z) = v \otimes (\lambda z)$.

Lemma 1.3. The complexification of $Cl(\mathbb{R}^n)$, $Cl(\mathbb{R}^n) \otimes \mathbb{C}$, is isomorphic as an algebra to $Cl(\mathbb{C}^n)$.

Proof. Define an algebra isomorphism $\mathcal{C}l(\mathbb{R}^n)\otimes\mathbb{C}\to\mathcal{C}l(\mathbb{C}^n)$ by

$$v \otimes \lambda \mapsto \lambda v \in \mathbb{C}^n \subset Cl(\mathbb{C}^n)$$

for each $v \in \mathbb{R}^n \subset \mathcal{C}l(\mathbb{R}^n)$ and $\lambda \in \mathbb{C}$.

Lemma 1.4. We can construct an algebra isomorphism:

$$\mu: \mathcal{C}l(\mathbb{C}^4) \to Mat(\mathbb{C},4).$$

Proof. Let $\{e_1, \dots, e_4\}$ denote the usual orthonormal basis for $\mathbb{C}^4 \subset \mathcal{C}l(\mathbb{C}^4)$. We can define an algebra isomorphism $\mathcal{C}l(\mathbb{C}^4) \to Mat(2,\mathbb{C}) \otimes Mat(2,\mathbb{C})$ as follows.

$$e_1 \mapsto \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \otimes \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \quad e_2 \mapsto \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$$

$$e_3 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \qquad e_4 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

By composing this map with the Kronecker map, we obtain the desired algebra isomorphism, μ .

Using the map μ from the previous Lemma, we have an action of $\mathcal{C}l(\mathbb{C}^4)$ on \mathbb{C}^4 which we will refer to as *Clifford multiplication*. We will denote this action by "·".

Now we will discuss the splittings of Clifford algebras. First note by Lemma 1.2, the map $\alpha: K^n \to K^n$ given by $\alpha(v) = -v$ extends to an algebra automorphism of $\mathcal{C}l(K^n)$. α induces the splitting

$$Cl(K^n) = Cl_0(K^n) \oplus Cl_1(K^n)$$

where $Cl_i(K^n) = \{ \varphi \in Cl(K^n) \mid \alpha(\varphi) = (-1)^i \varphi \}$. To verify this is indeed a splitting note each $Cl_i(K^n)$ is a linear subspace, $span\{Cl_0(K^n), Cl_1(K^n)\} = Cl(K^n)$ as each element of the vector space basis $\{1\} \cup \{e_{i_1}e_{i_2}\cdots e_{i_r} \mid 1 \leq i_1 < i_2 < \cdots i_r \leq n\}$ is contained in one of the $Cl_i(K^n)$, and $Cl_0(K^n) \cap Cl_1(K^n) = 0$ since if $\varphi \in Cl_0(K^n) \cap Cl_1(K^n)$ then $\varphi = -\varphi$ implies $\varphi = 0$ as K has no nontrival torsion.

The *volume element* of $Cl(\mathbb{R}^n)$ (oriented by the usual orientation of \mathbb{R}^n) is defined to be $\omega = e_1 \cdots e_n$ where the e_i are an orthonormal basis of \mathbb{R}^n with the usual orientation. To see this is well-defined, suppose e'_1, \cdots, e'_n is another oriented orthonormal basis. Then each $e'_i = \sum_i g_{ij} e_j$ for some $g = (g_{ij}) \in SO(n)$. Hence from Lemma 1.2

$$e'_1 \cdots e'_n = \det(g)e_1 \cdots e_n = e_1 \cdots e_n.$$

In the case $\omega^2 = 1$, we have the splitting

$$\mathcal{C}l(\mathbb{R}^n) = \mathcal{C}l^+(\mathbb{R}^n) \oplus \mathcal{C}l^-(\mathbb{R}^n)$$

where $Cl^{\pm}(\mathbb{R}^n)=\pi^{\pm}Cl(\mathbb{R}^n)$ with $\pi^{\pm}=\frac{1}{2}(1\pm\omega)$ (note we use this notation since left multiplication by π^{\pm} is a projection onto $Cl^{\pm}(\mathbb{R}^n)$). To see this is a splitting, observe each $Cl^{\pm}(\mathbb{R}^n)$ is a linear subspace, $span\{Cl^+(\mathbb{R}^n),Cl^-(\mathbb{R}^n)\}=Cl(K^n)$ since we can write each $\varphi\in Cl(\mathbb{R}^n)$ as $\varphi=\pi^+\varphi+\pi^-\varphi$, and $Cl^+(\mathbb{R}^n)\cap Cl^-(\mathbb{R}^n)=0$ since if $\pi^+\varphi_1=\pi^-\varphi_2$, using the facts $\pi^{\pm}\pi^{\pm}=\pi^{\pm}$ and $\pi^{\pm}\pi^{\mp}=0$, we obtain $0=\pi^-\varphi_2$. Note for each $e\in\mathbb{R}^n$, we have $\pi^{\pm}e=e^{\frac{1}{2}}(1\mp\omega)$.

Lemma 1.5.

$$\mathcal{C}l(\mathbb{R}^3) \cong \mathbb{H} \oplus \mathbb{H}$$

Proof. Define an algebra isomorphism $\mathbb{H} \oplus \mathbb{H} \to \mathcal{C}l(\mathbb{R}^3)$ by

$$i \oplus 0 \mapsto \frac{1}{2}(e_1e_2 - e_3) \quad j \oplus 0 \mapsto \frac{1}{2}(e_2e_3 - e_1)$$

$$0 \oplus i \mapsto \frac{1}{2}(e_1e_2 + e_3) \quad 0 \oplus j \mapsto \frac{1}{2}(e_2e_3 + e_1)$$

where the e_i are the usual oriented orthonormal basis for $\mathbb{R}^3 \subset Cl(\mathbb{R}^3)$.

Note this map sends $\mathbb{H} \oplus 0$ to $Cl^+(\mathbb{R}^3)$ and $0 \oplus \mathbb{H}$ to $Cl^-(\mathbb{R}^3)$.

Lemma 1.6.

$$Cl(K^{n-1}) \cong Cl_0(K^n)$$

Proof. We can define an algebra isomorphism $Cl(K^{n-1}) \to Cl_0(K^n)$ by

$$e_i \mapsto e_i e_n$$

where the e_i on the left are the usual orthonormal basis for $K^{n-1} \subset Cl(K^{n-1})$ and the e_i on the right are the usual orthonormal basis for $K^n \subset Cl(K^n)$.

Note the isomorphism from the previous Lemma sends the ω of $\mathcal{C}l(\mathbb{R}^3)$ to the ω of $\mathcal{C}l(\mathbb{R}^4)$ so it preserves the corresponding splittings, i.e. $\mathcal{C}l^{\pm}(\mathbb{R}^3) \mapsto \mathcal{C}l_0^{\pm}(\mathbb{R}^4)$.

Similarly $Cl(\mathbb{C}^n)$ has a *complex volume element* (oriented by the usual orientation of \mathbb{R}^n), $\omega_{\mathbb{C}}=i^{\left[\frac{n(n-1)}{2}\right]}e_1\cdots e_n$ where the e_i are an oriented orthonormal basis for $\mathbb{R}^n=(\mathbb{R}\oplus 0)\oplus\cdots\oplus(\mathbb{R}\oplus 0)\subset\mathbb{C}^n\subset Cl(\mathbb{C}^n)$. Note $\omega_{\mathbb{C}}^2=1$ so it induces a splitting

$$\mathcal{C}l(\mathbb{C}^n) = \mathcal{C}l^+(\mathbb{C}^n) \oplus \mathcal{C}l^-(\mathbb{C}^n)$$

where $Cl^{\pm}(\mathbb{C}^n) = \pi_{\mathbb{C}}^{\pm}Cl(\mathbb{C}^n)$ with $\pi_{\mathbb{C}}^{\pm} = \frac{1}{2}(1 \pm \omega_{\mathbb{C}})$. Finally note Clifford multiplication induces a splitting

$$\mathbb{C}^4 = (\mathbb{C}^4)^+ \oplus (\mathbb{C}^4)^-$$

where $(\mathbb{C}^4)^{\pm} = \pi_{\mathbb{C}}^{\pm} \cdot \mathbb{C}^4$.

Lemma 1.7. $\dim(\mathbb{C}^4)^{\pm} = 2$ and Clifford multiplication induces vector space isomorphisms:

$$\mathbb{C}^4 \to Hom_{\mathbb{C}}((\mathbb{C}^4)^+, (\mathbb{C}^4)^-)
\mathbb{C}^4 \to Hom_{\mathbb{C}}((\mathbb{C}^4)^-, (\mathbb{C}^4)^+).$$

Proof. First define a linear maps $\phi_{\pm}: \mathbb{C}^4 \to Hom_{\mathbb{C}}((\mathbb{C}^4)^{\pm}, (\mathbb{C}^4)^{\mp})$ by $e \mapsto (v \mapsto e \cdot v)$ where $e \in \mathbb{C}^4 \subset \mathcal{C}l(\mathbb{C}^4)$ and $v \in (\mathbb{C}^4)^{\pm} \subset \mathbb{C}^4$.

To see this is well-defined, choose $v \in (\mathbb{C}^4)^{\pm}$ and $e \in \mathbb{C}^4 \subset \mathcal{C}l(\mathbb{C}^4)$. Then

$$e \cdot v = e\pi_{\mathbb{C}}^{\pm} \cdot v = \pi_{\mathbb{C}}^{\mp} e \cdot v \in (\mathbb{C}^4)^-.$$

For any $e \in \mathbb{C}^4 \subset \mathcal{C}l(\mathbb{C}^4)$ with $\langle e, e \rangle \neq 0$ and $v \in (\mathbb{C}^4)^{\pm}$.

$$\phi_{\mp}(e) \circ \phi_{\pm}(e)(v) = - \langle e, e \rangle v$$

is an automorphism of $(\mathbb{C}^4)^{\pm}$ hence $\dim(\mathbb{C}^4)^+ = \dim(\mathbb{C}^4)^-$. Then since $\dim(\mathbb{C}^4)^+ +$ $\dim(\mathbb{C}^4)^- = 4$, $\dim(\mathbb{C}^4)^{\pm} = 2$.

Now we will show ϕ_{\pm} are injective. First suppose $\phi_{+}(e)=0$ for some $e\in\mathbb{C}^{4}\subset\mathcal{C}l(\mathbb{C}^{4})$ then $e\cdot v=0$ for each $v\in(\mathbb{C}^{4})^{+}$. It follows $e\pi_{\mathbb{C}}^{+}\cdot v'=0$ for each $v'\in\mathbb{C}^{4}$. Since Clifford multiplication is faithful, we have $e\pi_{\mathbb{C}}^{+}=0$. Hence $\pi_{\mathbb{C}}^{-}e=0$. We may write $e=c_{1}e_{1}+c_{2}e_{2}+c_{3}e_{3}+c_{4}e_{4}$ where the e_{i} are the usual orthonormal basis for \mathbb{C}^{4} and the c_{i} are constants in \mathbb{C} . Then the previous equation may be written

$$\pi_{\mathbb{C}}^{-}(c_1e_1 + c_2e_2 + c_3e_3 + c_4e_4) = 0.$$

If we distribute, this turns into

$$\frac{1}{2}(c_1e_1 + c_2e_2 + c_3e_3 + c_4e_4 + c_1e_2e_3e_4 - c_2e_1e_3e_4 + c_3e_1e_2e_4 - c_4e_1e_2e_3) = 0.$$

This is a linear combination of distinct basis vectors so each $c_i = 0$ and hence e = 0. Proving ϕ_- is injective can be done similarly.

Therefore since dim $Hom_{\mathbb{C}}((\mathbb{C}^4)^{\pm}, (\mathbb{C}^4)^{\mp}) = 4$, ϕ_{\pm} are isomorphisms.

Using this Lemma, we can define maps $C: \mathbb{C}^4 \otimes (\mathbb{C}^4)^{\pm} \to (\mathbb{C}^4)^{\mp}$ which we will also refer to as *Clifford multiplication*.

Lemma 1.8. Clifford multiplication induces algebra isomorphisms

$$\mathcal{C}l_0^{\pm}(\mathbb{C}^4) \to End(\mathbb{C}^4)^{\pm}.$$

Proof. Define algebra isomorphisms $\phi_{\pm}: \mathcal{C}l_0^{\pm}(\mathbb{C}^4) \to End(\mathbb{C}^4)^{\pm}$ by $\varphi \mapsto (v \mapsto \varphi \cdot v)$ where $\varphi \in Cl_0^{\pm}(\mathbb{C}^4)$ and $v \in (\mathbb{C}^4)^{\pm} \subset \mathbb{C}^4$. Since $\varphi = \pi_{\mathbb{C}}^{\pm}\varphi$ for all $\varphi \in Cl^{\pm}(\mathbb{C}^4)$, this is well-defined.

To see ϕ^{\pm} are injective suppose $\varphi \cdot v = 0$ for all $v \in (\mathbb{C}^4)^{\pm}$. Then $\varphi \cdot \pi_{\mathbb{C}}^{\pm} \cdot v' = 0$ for each $v' \in \mathbb{C}^4$. Because $\omega_{\mathbb{C}}$ commutes with each element in $\mathcal{C}l_0(\mathbb{C}^4)$, we have $\varphi \cdot v' = 0$ and since Clifford multiplication is faithful, $\varphi = 0$.

Then since $\dim Cl_0^{\pm}(\mathbb{C}^4) = \dim End(\mathbb{C}^4)^{\pm} = 4$, ϕ_{\pm} are vector space isomorphisms. Additionally they are algebra isomorphisms since for each $\varphi \in \mathcal{C}l_0^{\pm}(\mathbb{C}^4)$,

$$\phi_{\pm}(\varphi_1\varphi_2)(v) = \varphi_1\varphi_2 \cdot v = \varphi_1 \cdot (\varphi_2 \cdot v) = \phi_{\pm}(\varphi_1) \circ \phi_{\pm}(\varphi_2)(v).$$

2. Exterior algebras

First we define the vector space of alternating tensors of degree r on K^n to be

$$\wedge^r(K^n) = \{ \varphi \in T^r(K^n) \mid \varphi(v_1, \dots, v_i, \dots, v_i, \dots, v_r) = -\varphi(v_1, \dots, v_i, \dots, v_i, \dots, v_r) \}.$$

We have the alternating projection map $Alt: T^r(K^n) \to \wedge^r(K^n)$ given by

$$\varphi(v_1, \dots, v_r) \mapsto \frac{1}{r!} \sum_{\sigma \in S_r} sgn(\sigma) \varphi(v_{\sigma(1)}, \dots, v_{\sigma(r)})$$

where S_r denotes the set of permutations of r elements.

Definition 2.1. The *exterior algebra* on K^n is defined to be the algebra

$$\wedge (K^n) = \bigoplus_{r=0}^{\infty} \wedge^r (K^n) = K \oplus K^n \oplus \wedge^2 (K^n) \oplus \wedge^3 (K^n) \oplus \cdots$$

whose multiplication \wedge is given by linearly extending the map $\wedge^{\ell}(K^n) \otimes \wedge^m(K^n) \to \wedge^{\ell+m}(K^n)$ defined by

$$(\varphi, \phi) \mapsto \frac{(\ell + m)!}{\ell! m!} Alt(\varphi \otimes \phi).$$

Note $\wedge (K^n)$ is an associative algebra with multiplicative identity $1 \in K = \wedge^0(K^n) \subset \wedge (K^n)$.

Lemma 2.1. Let $\{e_1, \dots, e_n\}$ denote a basis for K^n . Then $\wedge(K^n)$ is generated as an algebra by the e_i and 1. It follows $\wedge(K^n)$ is a 2^n -dimensional vector space with basis

$$\{1\} \cup \{e_{i_1} \land e_{i_2} \land \dots \land e_{i_r} \mid 1 \le i_1 < i_2 < \dots i_r \le n\}.$$

Corollary 2.1. $\wedge(K^n)$ and $\mathcal{C}l(K^n)$ are naturally isomorphic as vector spaces.

We define the *Hodge star operator* (induced by the usual orientation and the usual inner product <,>) to be the map

$$*: \wedge^2(\mathbb{R}^n) \to \wedge^2(\mathbb{R}^n)$$

given by $*(e_i \land e_j) = e_k \land e_\ell$ where the e_i are an oriented orthonormal basis and (i, j, k, ℓ) is an even permutation of $\{1, 2, 3, 4\}$. Hence

$$\begin{array}{lll} e_1 \wedge e_2 \mapsto e_3 \wedge e_4 & e_1 \wedge e_3 \mapsto -e_2 \wedge e_4 \\ e_1 \wedge e_4 \mapsto e_2 \wedge e_3 & e_2 \wedge e_3 \mapsto e_1 \wedge e_4 \\ e_2 \wedge e_4 \mapsto -e_1 \wedge e_3 & e_3 \wedge e_4 \mapsto e_1 \wedge e_2 \end{array}$$

Lemma 2.2. The Hodge star operator is well-defined.

$$*: \wedge^2(\mathbb{R}^n) \to \wedge^2(\mathbb{R}^n)$$
 induces a splitting

$$\wedge^2(\mathbb{R}^4) = \wedge^-(\mathbb{R}^4) \oplus \wedge^+(\mathbb{R}^4)$$

where
$$\wedge^{\pm}(\mathbb{R}^4) = \{ \varphi \in \wedge^2(\mathbb{R}^4) \mid *\varphi = \pm \varphi \}.$$

Lemma 2.3. The natural isomorphism from Corollary 2.1 induces a vector space isomorphism between the subspaces

$$(Cl_0(\mathbb{R}^4)\otimes\mathbb{C})^+$$
 and $\pi_{\mathbb{C}}^+\mathbb{C}\oplus(\wedge^+(\mathbb{R}^4)\otimes\mathbb{C}).$

Proof. Let $\{e_1, \dots, e_4\}$ denote an oriented orthonormal basis for $\mathbb{R}^4 = \mathbb{R}^4 \otimes 1$. Notice $(Cl_0(\mathbb{R}^4) \otimes \mathbb{C})^+$ has the basis

$$\{\pi_{\mathbb{C}}^+, e_1e_2 + e_3e_4, e_1e_3 - e_2e_4, e_1e_4 + e_2e_3\}$$

so we see $(Cl_0(\mathbb{R}^4)\otimes\mathbb{C})^+\mapsto \pi_{\mathbb{C}}^+\mathbb{C}\oplus \wedge^+(\mathbb{R}^4)\otimes\mathbb{C}$.

3. SPIN(N) AND SPINC(N)

Now we will define the Lie groups Spin(n) and $Spin^c(n)$. Let $\mathcal{C}l^{\times}(\mathbb{R}^n)$ denote the multiplicative group of units in $\mathcal{C}l(\mathbb{R}^n)$. We define Pin(n) to be the subgroup of $\mathcal{C}l^{\times}(\mathbb{R}^n)$ generated by elements $v \in \mathbb{R}^n \subset Cl(\mathbb{R}^n)$ with $\langle v, v \rangle = 1$. We define Spin(n) to be the intersection of Pin(n) and $\mathcal{C}l_0(\mathbb{R}^n)$.

Lemma 3.1. We have an isomorphism $SU(2) \times SU(2) \to Spin(4)$ where the splitting on the left corresponds with the splitting $Spin(4) = Spin(4)^+ \times Spin(4)^-$.

Proof. Recall we have algebra isomorphisms

$$\mathbb{H} \oplus \mathbb{H} \to \mathcal{C}l(\mathbb{R}^3) \to \mathcal{C}l_0(\mathbb{R}^4)$$

where the first map is the isomorphism from Lemma 1.5 and the second map is the isomorphism from Lemma 1.6.

If we identify \mathbb{H} with \mathbb{R}^4 , the group of unit quaternions is identified with $S^3 \subset \mathbb{R}^4$ and is isomorphic to SU(2). Then by restricting the composition of the above maps to $S^3 \times S^3 \subset \mathbb{H} \oplus \mathbb{H}$, we obtain an isomorphism

$$SU(2) \times SU(2) \rightarrow Spin(4)$$
.

This composition preserves the desired splittings as each of the isomorphisms above preserves its own corresponding splittings.

We define $Spin^c(n)$ to be the multiplicative group of units $[Spin(n)\times S^1]\subset \mathcal{C}l(\mathbb{R}^n)\otimes\mathbb{C}$. Observe by using the algebra isomorphism from Lemma 1.3, we can consider $Spin^c(n)$ to be a multiplicative group of units contained in $\mathcal{C}l(\mathbb{C}^4)$.

Lemma 3.2.
$$Spin^c(n) \cong Spin(n) \times S^1/\{\pm(1,1)\}.$$

Proof. First we have the natural surjective group homomorphism

$$Spin(n)\times S^1\hookrightarrow [Spin(n)\times S^1].$$

Elements of the kernel of this map are of form $(c1, c^{-1})$ where $c \in S^1 \cap \mathbb{R} = \{-1, 1\}$ AND $c1 \in Spin(n)$. To see $-1 \in Spin(n) = Pin(n) \cap Cl_0(\mathbb{R}^n)$, first $-1 \in Pin(n)$ since $e_1e_1 = -1$ and $-1 \in Cl_0(\mathbb{R}^n)$ since

$$\alpha(-1) = \alpha(e_1e_1) = \alpha(e_1)\alpha(e_1) = (-e_1)(-e_1) = e_1e_1 = -1.$$

Thus the kernel of our map is $\{\pm(1,1)\}$ so by the first isomorphism theorem,

$$Spin^{c}(n) \cong Spin(n) \times S^{1}/\{\pm(1,1)\}.$$

From this Lemma and Lemma 3.1, we obtain an isomorphism

$$Spin^c(4) \cong SU(2) \times SU(2) \times S^1/\{\pm(I,I,1)\}.$$

Note that under this isomorphism, $Spin^c(4)^+ \oplus \pi_{\mathbb{C}}^- \subset \mathcal{C}l(\mathbb{C}^4)$ is identified with the subgroup $[SU(2) \times I \times S^1] \subset SU(2) \times SU(2) \times S^1/\{\pm(I,I,1)\}$ and $Spin^c(4)^- \oplus \pi_{\mathbb{C}}^+$ is identified with the subgroup $[I \times SU(2) \times S^1]$.

Lemma 3.3. We have a group isomorphism

$$\{(A,B) \in U(2) \times U(2) \mid \det(A) = \det(B)\} \to Spin^{c}(4) \subset \mathcal{C}l(\mathbb{C}^{4})$$

where the splitting of $\{(A,B) \in U(2) \times U(2) \mid \det(A) = \det(B)\}$ corresponds with the splitting $Spin^c(4) = Spin^c(4)^+ \times Spin^c(4)^-$.

Proof. First there is an isomorphism

$$\{(A,B) \in U(2) \times U(2) \mid \det(A) = \det(B)\} \to SU(2) \times SU(2) \times S^1/\{\pm(I,I,1)\}$$
 defined by

$$(A,B) \mapsto \left[\left(A \begin{bmatrix} \lambda^{-1} & 0 \\ 0 & \lambda^{-1} \end{bmatrix}, B \begin{bmatrix} \lambda^{-1} & 0 \\ 0 & \lambda^{-1} \end{bmatrix}, \lambda \right) \right]$$

where $\lambda^2 = \det A$. Note since

$$[(A,B,\lambda)] = [(-A,-B,-\lambda)] \quad \text{in} \quad SU(2) \times SU(2) \times S^1/\{\pm (I,I,1)\},$$

our map is the same for each of the two choices of λ and hence is well-defined.

The rest follows from the comments after Lemma 3.2.

The adjoint representation of Spin(n) is the map $Ad: Spin(n) \to Aut(\mathcal{C}l(\mathbb{R}^n))$ defined by $\varphi \mapsto (y \mapsto \varphi y \varphi^{-1})$. Recall

$$Pin(n) = \{v_1 \cdots v_r \in \mathcal{C}l(\mathbb{R}^n) \mid v_i \in \mathbb{R}^n \text{ with } \langle v_i, v_i \rangle = 1\}$$

so we see $Ad_{\varphi}(v) \in \mathbb{R}^n$ for each $\varphi \in Spin(n) \subset Pin(n)$ and $v \in \mathbb{R}^n$. Hence we can restrict the range to obtain a homomorphism $Ad: Spin(n) \to GL(n)$. In fact:

Lemma 3.4. Ad induces a group homomorphism,

$$\xi: Spin(n) \to SO(n)$$

which is a double covering map. For n > 2, this is the universal double cover (up to isomorphism).

For $Spin^c(n)$, we can define a double-covering map of $SO(n) \times U(1)$ as follows. Let $\xi^c: Spin^c(n) \to SO(n) \times U(1)$ be the homomorphism $[(\varphi, \lambda)] \mapsto (\xi(\varphi), \lambda^2)$. Also observe the map $\xi: Spin(n) \to SO(n)$ induces the homomorphism $\xi: Spin^c(n) \to SO(n)$ given by $[(\varphi, \lambda)] \mapsto \xi(\varphi)$. The kernel of this map is $Z(Spin^c(n)) \cong S^1$.

Lemma 3.5.

$$Spin^c(n) \cong Spin^c(n) \times_{S^1} S^1 = Spin^c(n) \times S^1 / \{(\lambda 1, \lambda^{-1}) \mid \lambda \in S^1\}$$

Proof. Define an isomorphism by $\varphi \mapsto [\varphi, 1]$. To see this is onto observe $[\varphi, \lambda] = [\lambda \varphi, 1]$ for each $\varphi \in Spin^c(n)$ and $\lambda \in S^1$. To see injectivity suppose $[\varphi_1, 1] = [\varphi_2, 1]$ for some $\varphi_i \in Spin^c(n)$. Then $(\varphi_1, 1) = (\lambda \varphi_2, \lambda^{-1})$ for some $\lambda \in S^1$. Hence $\lambda = 1$ and $\varphi_1 = \varphi_2$.

4. SPINC STRUCTURES

Given an orientable manifold X, recall a choice of orientation and Riemannian metric reduces the structure group of TX to $SO(n) \subset GL(n)$ hence we obtain a frame bundle $P_{SO(n)}$.

Definition 4.1. A $Spin^c$ -structure for an oriented Riemannian n-manifold X is a principal $Spin^c(n)$ -bundle $P_{Spin^c(n)} \to X$ together with a bundle map $P_{Spin^c(n)} \to P_{SO(n)}$ that is $\xi \colon Spin^c(n) \to SO(n)$ fibrewise.

The determinant line bundle of a $Spin^c$ -structure $P_{Spin^c(n)} \to P_{SO(n)}$ is defined to be the complex line bundle $L = P_{Spin^c(n)} \times_{\det} \mathbb{C}$ where $\det : Spin^c(n) \to U(1)$ is given by $[(\varphi, \lambda)] \mapsto \lambda^2$.

Now we will restrict our attention to the four-dimensional case. Using the Clifford multiplication map $\mu: \mathcal{C}l(\mathbb{C}^4) \to Mat(\mathbb{C},4)$ from Lemma 1.4, the *complex spinor bundle* associated to μ is defined to be the complex vector bundle $W = P_{Spin^c(n)} \times_{\mu} \mathbb{C}^4$.

We may split W as $W = W^+ \oplus W^-$ where

$$W^{\pm} = P_{Spin^c(4)} \times_{\mu^{\pm}} (\mathbb{C}^4)^{\pm}$$

where $\mu^{\pm}(\bullet) = \mu(\pi_{\mathbb{C}}^{\pm}\bullet)$. W^{+} is called the *positive complex spinor bundle* and W^{-} is called the *negative complex spinor bundle*. From Lemma 3.3, both W^{\pm} have structure group U(2).

Now we will show $H^2(X; \mathbb{Z})$ has an action on $Spin^c(X)$ (the set of isomorphism classes of $Spin^c$ -structures on X). For $E \in H^2(X; \mathbb{Z})$, let $P_{U(1)}$ denote the corresponding principal U(1)-bundle. We can define a new $Spin^c$ -structure $\xi \otimes E$ as follows. Consider

$$P_{Spin^{c}(4)} \times_{U(1)} P_{U(1)} = P_{Spin^{c}(4)} \times P_{U(1)} / \sim$$

where $(\varphi, y) \sim (\varphi \cdot \lambda, y \cdot \lambda^{-1})$ for each $\lambda \in U(1)$. On the left, U(1) is identified with $Z(Spin^c(n))$ in our usual way. From Lemma 3.5, this is a principal $Spin^c(n)$ bundle. We can define our bundle map $P_{Spin^c(4)} \times_{U(1)} P_{U(1)} \to P_{SO(n)}$ by $[\varphi, y] \mapsto \xi(\varphi)$.

Finally observe the induced map $\det: Spin^c(n) \times_{S^1} S^1 \to S^1$ is given by $[\varphi \otimes z, \lambda] \mapsto z^2 \lambda^2$. We can write this as $\det = \det_1 \det_2 \det_2 \det_2$ where $\det_i : Spin^c(n) \times_{S^1} S^1 \to S^1$ are given by $\det_1([\varphi \otimes z, \lambda]) = z^2$ and $\det_2([\varphi \otimes z, \lambda]) = \lambda$. Hence

$$(P_{Spin^{c}(4)} \times_{U(1)} P_{U(1)}) \times_{\det} \mathbb{C} = (P_{Spin^{c}(4)} \times_{U(1)} P_{U(1)}) \times_{\det} \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C}$$

$$= ((P_{Spin^{c}(4)} \times_{U(1)} P_{U(1)}) \times_{\det_{1}} \mathbb{C}) \otimes$$

$$((P_{Spin^{c}(4)} \times_{U(1)} P_{U(1)}) \times_{\det_{2}} \mathbb{C}) \otimes$$

$$((P_{Spin^{c}(4)} \times_{U(1)} P_{U(1)}) \times_{\det_{2}} \mathbb{C})$$

$$= L \otimes E \otimes E$$

So we see our action has the following effect on determinant line bundles: $L \mapsto L + 2E$.

Lemma 4.1. The above action is free and transitive.

5. CLIFFORD BUNDLES

Definition 5.1. Given a oriented Riemannian n-manifold X with frame bundle $P_{SO(n)}$, we define the *Clifford bundle* of X as $\mathcal{C}l(X) = P_{SO(n)} \times_{SO(n)} \mathcal{C}l(\mathbb{R}^n)$. We also have the complexified Clifford bundle $Cl(X) \otimes \mathbb{C} = P_{SO(n)} \times_{SO(n)} (\mathcal{C}l(\mathbb{R}^n) \otimes \mathbb{C})$.

Let X be a oriented Riemannian n-manifold with frame bundle $P_{SO(n)}$ and $Spin^c$ -structure $\xi: P_{Spin^c(n)} \to P_{SO(n)}$.

Lemma 5.1. The map $\xi: P_{Spin^c(n)} \to P_{SO(n)}$ induces a bundle isomorphism:

$$P_{Spin^{c}(n)} \times_{Ad} \mathcal{C}l(\mathbb{R}^{n}) \otimes \mathbb{C} \to \mathcal{C}l(X) \otimes \mathbb{C}$$

where $Ad: Spin^{c}(n) \to Aut(\mathcal{C}l(\mathbb{R}^{n}) \otimes \mathbb{C})$ is given by

$$\varphi \otimes \lambda \mapsto (y \otimes v \mapsto \varphi y \varphi^{-1} \otimes \lambda v \lambda^{-1} = \varphi y \varphi^{-1} \otimes v).$$

Proof. Define a map

$$P_{Spin^{c}(n)} \times \mathcal{C}l(\mathbb{R}^{n}) \otimes \mathbb{C} \to P_{SO(n)} \times \mathcal{C}l(\mathbb{R}^{n}) \otimes \mathbb{C}$$

by $(y,v) \mapsto (\xi(y),v)$. For $\varphi \otimes \lambda \in Spin^c(n)$ and $(y,v \otimes z) \in P_{Spin^c(n)} \times \mathcal{C}l(\mathbb{R}^n) \otimes \mathbb{C}$, we have

$$(y \cdot \varphi^{-1} \otimes \lambda^{-1}, \varphi v \varphi^{-1} \otimes z) \mapsto (\xi(y) \cdot \xi(\varphi)^{-1}, \xi(\varphi)v \otimes z)$$

so our map induces a bundle map

$$\xi': P_{Spin^c(n)} \times_{Ad} \mathcal{C}l(\mathbb{R}^4) \otimes \mathbb{C} \to \mathcal{C}l(X) \otimes \mathbb{C}.$$

Surjectivity follows from the fact that ξ is onto. To see ξ' is injective suppose

$$\xi'([y_1, v_1 \otimes z_1]) = \xi'([y_2, v_2 \otimes z_2]).$$

Then $[(\xi(y_1), v_1 \otimes z_1)] = [(\xi(y_2), v_2 \otimes z_2)]$ and hence

$$(\xi(y_1) \cdot \xi(\varphi)^{-1}, \xi(\varphi)v_1 \otimes z_1) = (\xi(y_2), v_2 \otimes z_2)$$

for some $\varphi \otimes \lambda \in Spin^c(n)$. Since $Spin^c(n)$ acts transitively on the fibres of $P_{Spin^c(n)}$, we have $y_1 \cdot (\varphi' \otimes \lambda')^{-1} = y_2$ for some $\varphi' \otimes \lambda' \in Spin^c(4)$. Observe

$$\xi(y_2) = \xi(y_1 \cdot (\varphi' \otimes \lambda')^{-1}) = \xi(y_1) \cdot \xi(\varphi')^{-1}$$

so since SO(n) acts freely on the fibres of $P_{SO(n)}$, it follows $\xi(\varphi') = \xi(\varphi)$ and hence

$$(y_1 \cdot (\varphi' \otimes \lambda')^{-1}, \xi(\varphi')v_1 \otimes z_1) = (y_2, v_2 \otimes z_2)$$

and therefore ξ' is a bundle isomorphism.

Now additionally suppose X is 4-dimensional with complex spinor bundle $W=W^+\oplus W^-$. We'll show $Cl(X)\otimes \mathbb{C}$ has an action called Clifford multiplication on W. Define a map

$$C: P_{Spin^c(4)} \times (\mathcal{C}l(\mathbb{C}^4) \otimes \mathbb{C}^4) \to P_{Spin^c(4)} \times \mathbb{C}^4$$

by $(q, \varphi \otimes v) \mapsto (q, \varphi \cdot v)$ where \cdot denotes Clifford multiplication. For $g \in Spin^c(4)$, we have

$$C(qg^{-1},g\varphi g^{-1}\otimes g\cdot v)=(qg^{-1},g\varphi g^{-1}\cdot g\cdot v)=(qg^{-1},g\cdot (\varphi\cdot v))$$

so this induces a bundle map

$$C: (\mathcal{C}l(X) \otimes \mathbb{C}) \otimes W \to W$$

which we will refer to as the Clifford multiplication map yet again.

Finally from Lemma 1.1, Cl(X) contains the subbundle

$$P_{SO(4)} \times_{SO(4)} \mathbb{R}^4 \subset P_{SO(4)} \times_{SO(4)} Cl(\mathbb{R}^4) = Cl(X)$$

which is canonically isomorphic to TX. It follows $Cl(X) \otimes \mathbb{C}$ contains a subbundle canonically isomorphic to $TX \otimes \mathbb{C}$. Thus using the canonical identification of tangent and cotangent bundles, we can define a map

$$C: (T^*X \otimes \mathbb{C}) \otimes W \to W.$$

As a result of Lemma 1.7, we have the restrictions

$$C: (T^*X \otimes \mathbb{C}) \otimes W^{\pm} \to W^{\mp}.$$

REFERENCES

- [1] Nicolas Ginoux. Spinc structures on manifolds.
- [2] Robert Gompf and Andras I. Stipsicz. 4 Manifolds and Kirby Calculus.
- [3] H. Blaine Lawson Jr. and Marie-Louise Michelsohn. *Spin Geometry*. Princeton University Press, Princeton, New Jersey, 1989.
- [4] John W. Morgan. *The Seiberg-Witten Equations and Applications to the Topology of Four-Manifolds*. Princeton University Press, Princeton, New Jersey, 1996.
- [5] Liviu I. Nicolaescu. Notes on seiberg-witten theory.