
1. CLIFFORD ALGEBRAS

Throughout this text, let K denote the field R or C.

Definition 1.1. The tensor algebra on Kn is defined to be the algebra

T (Kn) = ⊕∞r=0T
r(Kn) = K ⊕Kn ⊕Kn ⊗Kn ⊕ · · ·

whose multiplication is given by linearly extending the canonical map

T `(Kn)× Tm(Kn)→ T `+m(Kn).

Note T (Kn) is associative with multiplicative identity 1 ∈ K = T 0(Kn) ⊂ T (Kn).

Definition 1.2. The Clifford Algebra on Kn is defined to be the quotient of algebras

Cl(Kn) = T (Kn)/I(Kn)

where I(Kn) is the two-sided ideal generated by elements of form

v ⊗ v + < v, v > 1 ∈ T (Kn) with v ∈ Kn.

Here < ,> denotes the usual inner product on Kn, also known as the dot product.

Note Cl(Kn) has the multiplicative identity, [1] ∈ [K] ⊂ Cl(Kn). We will denote [1]
with 1.

Lemma 1.1. There is a natural embedding of Kn = T 1(Kn) into Cl(Kn).

Proof. It is sufficient to show Kn ∩ I(Kn) = {0}. First an element in T (Kn) is said to
be of pure degree s if it is contained in T s(Kn) ⊂ T (Kn). Let ϕ ∈ Kn ∩ I(Kn). Since
ϕ ∈ I(Kn) we may write it as a finite sum

ϕ =
∑
i

ai ⊗ (vi ⊗ vi+ < vi, vi >)⊗ bi

where the ai and bi are each of pure degree. Since ϕ ∈ Kn = T 1(Kn), we have∑
i′

ai′ ⊗ (vi′ ⊗ vi′)⊗ bi′ = 0

where the above sum is taken over indices where each deg ai′ + deg bi′ is maximal. By
contraction with < ,>, we also have∑

i′

ai′ < vi′ , vi′ > bi′ = 0.

Hence ∑
i′

ai′ ⊗ (vi′ ⊗ vi′+ < vi′ , vi′ >)⊗ bi′ = 0.

and proceeding inductively, we conclude ϕ = 0. �
1
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Lemma 1.2. Let {e1, · · · , en} denote an orthonormal basis for Kn. Then Cl(Kn) is gen-
erated as an algebra by the ei subject to the relations:

e2i = −1 and eiej = −ejei
for each i and j 6= i.

It follows Cl(Kn) is a 2n-dimensional vector space with basis

{1} ∪ {ei1ei2 · · · eir | 1 ≤ i1 < i2 < · · · ir ≤ n}.
�

For the reader’s convenience, we recall the definition of the complexification of a real
algebra.

Definition 1.3. If A is an algebra over R then its complexification is the algebra A ⊗R C
endowed with the following complex scalar multiplication map. For each v⊗ z ∈ A⊗RC
and λ ∈ C, we define λ(v ⊗ z) = v ⊗ (λz).

Lemma 1.3. The complexification of Cl(Rn), Cl(Rn)⊗C, is isomorphic as an algebra to
Cl(Cn).

Proof. Define an algebra isomorphism Cl(Rn)⊗ C→ Cl(Cn) by

v ⊗ λ 7→ λv ∈ Cn ⊂ Cl(Cn)

for each v ∈ Rn ⊂ Cl(Rn) and λ ∈ C.
�

Lemma 1.4. We can construct an algebra isomorphism:

µ : Cl(C4)→Mat(C, 4).

Proof. Let {e1, · · · , e4} denote the usual orthonormal basis for C4 ⊂ Cl(C4). We can
define an algebra isomorphism Cl(C4)→Mat(2,C)⊗Mat(2,C) as follows.

e1 7→
[
i 0
0 −i

]
⊗
[

0 i
−i 0

]
e2 7→

[
0 1
−1 0

]
⊗
[

0 i
−i 0

]

e3 7→
[
1 0
0 1

]
⊗
[
0 i
i 0

]
e4 7→

[
1 0
0 1

]
⊗
[
i 0
0 −i

]
By composing this map with the Kronecker map, we obtain the desired algebra isomor-
phism, µ. �

Using the map µ from the previous Lemma, we have an action of Cl(C4) on C4 which
we will refer to as Clifford multiplication . We will denote this action by “·”.
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Now we will discuss the splittings of Clifford algebras. First note by Lemma 1.2, the
map α : Kn → Kn given by α(v) = −v extends to an algebra automorphism of Cl(Kn).
α induces the splitting

Cl(Kn) = Cl0(Kn)⊕ Cl1(Kn)

where Cli(Kn) = {ϕ ∈ Cl(Kn) | α(ϕ) = (−1)iϕ}. To verify this is indeed a splitting note
each Cli(Kn) is a linear subspace, span{Cl0(Kn), Cl1(K

n)} = Cl(Kn) as each element
of the vector space basis {1} ∪ {ei1ei2 · · · eir | 1 ≤ i1 < i2 < · · · ir ≤ n} is contained in
one of the Cli(Kn), and Cl0(Kn) ∩ Cl1(Kn) = 0 since if ϕ ∈ Cl0(Kn) ∩ Cl1(Kn) then
ϕ = −ϕ implies ϕ = 0 as K has no nontrival torsion.

The volume element of Cl(Rn) (oriented by the usual orientation of Rn) is defined to be
ω = e1 · · · en where the ei are an orthonormal basis of Rn with the usual orientation. To
see this is well-defined, suppose e′1, · · · , e′n is another oriented orthonormal basis. Then
each e′i =

∑
j gijej for some g = (gij) ∈ SO(n). Hence from Lemma 1.2

e′1 · · · e′n = det(g)e1 · · · en = e1 · · · en.
In the case ω2 = 1, we have the splitting

Cl(Rn) = Cl+(Rn)⊕ Cl−(Rn)

where Cl±(Rn) = π±Cl(Rn) with π± = 1
2
(1 ± ω) (note we use this notation since left

multiplication by π± is a projection onto Cl±(Rn)) . To see this is a splitting, observe each
Cl±(Rn) is a linear subspace, span{Cl+(Rn), Cl−(Rn)} = Cl(Kn) since we can write
each ϕ ∈ Cl(Rn) as ϕ = π+ϕ+π−ϕ, andCl+(Rn)∩Cl−(Rn) = 0 since if π+ϕ1 = π−ϕ2,
using the facts π±π± = π± and π±π∓ = 0, we obtain 0 = π−ϕ2. Note for each e ∈ Rn,
we have π±e = e1

2
(1∓ ω).

Lemma 1.5.
Cl(R3) ∼= H⊕H

Proof. Define an algebra isomorphism H⊕H→ Cl(R3) by

i⊕ 0 7→ 1
2
(e1e2 − e3) j ⊕ 0 7→ 1

2
(e2e3 − e1)

0⊕ i 7→ 1
2
(e1e2 + e3) 0⊕ j 7→ 1

2
(e2e3 + e1)

where the ei are the usual oriented orthonormal basis for R3 ⊂ Cl(R3). �

Note this map sends H⊕ 0 to Cl+(R3) and 0⊕H to Cl−(R3).
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Lemma 1.6.
Cl(Kn−1) ∼= Cl0(Kn)

Proof. We can define an algebra isomorphism Cl(Kn−1)→ Cl0(Kn) by

ei 7→ eien

where the ei on the left are the usual orthonormal basis for Kn−1 ⊂ Cl(Kn−1) and the ei
on the right are the usual orthonormal basis for Kn ⊂ Cl(Kn).

�

Note the isomorphism from the previous Lemma sends the ω of Cl(R3) to the ω of
Cl(R4) so it preserves the corresponding splittings, i.e. Cl±(R3) 7→ Cl±0 (R4).

Similarly Cl(Cn) has a complex volume element (oriented by the usual orientation of
Rn), ωC = i[

n(n−1)
2 ]e1 · · · en where the ei are an oriented orthonormal basis for Rn =

(R⊕ 0)⊕ · · · ⊕ (R⊕ 0) ⊂ Cn ⊂ Cl(Cn). Note ω2
C = 1 so it induces a splitting

Cl(Cn) = Cl+(Cn)⊕ Cl−(Cn)

where Cl±(Cn) = π±CCl(Cn) with π±C = 1
2
(1± ωC).

Finally note Clifford multiplication induces a splitting

C4 = (C4)+ ⊕ (C4)−

where (C4)± = π±C · C4.

Lemma 1.7. dim(C4)± = 2 and Clifford multiplication induces vector space isomor-
phisms:

C4 → HomC((C4)+, (C4)−)
C4 → HomC((C4)−, (C4)+).

Proof. First define a linear maps φ± : C4 → HomC((C4)±, (C4)∓) by e 7→ (v 7→ e · v)
where e ∈ C4 ⊂ Cl(C4) and v ∈ (C4)± ⊂ C4.

To see this is well-defined, choose v ∈ (C4)± and e ∈ C4 ⊂ Cl(C4). Then

e · v = eπ±C · v = π∓C e · v ∈ (C4)−.

For any e ∈ C4 ⊂ Cl(C4) with < e, e > 6= 0 and v ∈ (C4)±,

φ∓(e) ◦ φ±(e)(v) = − < e, e > v

is an automorphism of (C4)± hence dim(C4)+ = dim(C4)−. Then since dim(C4)+ +
dim(C4)− = 4, dim(C4)± = 2.
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Now we will show φ± are injective. First suppose φ+(e) = 0 for some e ∈ C4 ⊂ Cl(C4)
then e · v = 0 for each v ∈ (C4)+. It follows eπ+

C · v′ = 0 for each v′ ∈ C4. Since
Clifford multiplication is faithful, we have eπ+

C = 0. Hence π−C e = 0. We may write
e = c1e1 + c2e2 + c3e3 + c4e4 where the ei are the usual orthonormal basis for C4 and the
ci are constants in C. Then the previous equation may be written

π−C (c1e1 + c2e2 + c3e3 + c4e4) = 0.

If we distribute, this turns into
1

2
(c1e1 + c2e2 + c3e3 + c4e4 + c1e2e3e4 − c2e1e3e4 + c3e1e2e4 − c4e1e2e3) = 0.

This is a linear combination of distinct basis vectors so each ci = 0 and hence e = 0.
Proving φ− is injective can be done similarly.

Therefore since dimHomC((C4)±, (C4)∓) = 4, φ± are isomorphisms.
�

Using this Lemma, we can define maps C : C4 ⊗ (C4)± → (C4)∓ which we will also
refer to as Clifford multiplication.

Lemma 1.8. Clifford multiplication induces algebra isomorphisms

Cl±0 (C4)→ End(C4)±.

Proof. Define algebra isomorphisms φ± : Cl±0 (C4) → End(C4)± by ϕ 7→ (v 7→ ϕ · v)
where ϕ ∈ Cl±0 (C4) and v ∈ (C4)± ⊂ C4. Since ϕ = π±Cϕ for all ϕ ∈ Cl±(C4), this is
well-defined.

To see φ± are injective suppose ϕ · v = 0 for all v ∈ (C4)±. Then ϕ · π±C · v′ = 0 for
each v′ ∈ C4. Because ωC commutes with each element in Cl0(C4), we have ϕ · v′ = 0
and since Clifford multiplication is faithful, ϕ = 0.

Then since dimCl±0 (C4) = dimEnd(C4)± = 4, φ± are vector space isomorphisms.
Additionally they are algebra isomorphisms since for each ϕ ∈ Cl±0 (C4),

φ±(ϕ1ϕ2)(v) = ϕ1ϕ2 · v = ϕ1 · (ϕ2 · v) = φ±(ϕ1) ◦ φ±(ϕ2)(v).

�
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2. EXTERIOR ALGEBRAS

First we define the vector space of alternating tensors of degree r on Kn to be

∧r(Kn) = {ϕ ∈ T r(Kn) | ϕ(v1, · · · , vi, · · · , vj, · · · vr) = −ϕ(v1, · · · , vj, · · · , vi, · · · vr)}.
We have the alternating projection map Alt : T r(Kn)→ ∧r(Kn) given by

ϕ(v1, · · · , vr) 7→
1

r!

∑
σ∈Sr

sgn(σ)ϕ(vσ(1), · · · , vσ(r))

where Sr denotes the set of permutations of r elements.

Definition 2.1. The exterior algebra on Kn is defined to be the algebra

∧(Kn) = ⊕∞r=0 ∧r (Kn) = K ⊕Kn ⊕ ∧2(Kn)⊕ ∧3(Kn)⊕ · · ·
whose multiplication ∧ is given by linearly extending the map ∧`(Kn) ⊗ ∧m(Kn) →
∧`+m(Kn) defined by

(ϕ, φ) 7→ (`+m)!

`!m!
Alt(ϕ⊗ φ).

Note ∧(Kn) is an associative algebra with multiplicative identity 1 ∈ K = ∧0(Kn) ⊂
∧(Kn).

Lemma 2.1. Let {e1, · · · , en} denote a basis for Kn. Then ∧(Kn) is generated as an
algebra by the ei and 1. It follows ∧(Kn) is a 2n-dimensional vector space with basis

{1} ∪ {ei1 ∧ ei2 ∧ · · · ∧ eir | 1 ≤ i1 < i2 < · · · ir ≤ n}.
�

Corollary 2.1. ∧(Kn) and Cl(Kn) are naturally isomorphic as vector spaces.

We define the Hodge star operator (induced by the usual orientation and the usual inner
product <,>) to be the map

∗ : ∧2(Rn)→ ∧2(Rn)

given by ∗(ei ∧ ej) = ek ∧ e` where the ei are an oriented orthonormal basis and (i, j, k, `)
is an even permutation of {1, 2, 3, 4}. Hence

e1 ∧ e2 7→ e3 ∧ e4 e1 ∧ e3 7→ −e2 ∧ e4
e1 ∧ e4 7→ e2 ∧ e3 e2 ∧ e3 7→ e1 ∧ e4
e2 ∧ e4 7→ −e1 ∧ e3 e3 ∧ e4 7→ e1 ∧ e2

Lemma 2.2. The Hodge star operator is well-defined. �

∗ : ∧2(Rn)→ ∧2(Rn) induces a splitting

∧2(R4) = ∧−(R4)⊕ ∧+(R4)

where ∧±(R4) = {ϕ ∈ ∧2(R4) | ∗ϕ = ±ϕ}.
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Lemma 2.3. The natural isomorphism from Corollary 2.1 induces a vector space isomor-
phism between the subspaces

(Cl0(R4)⊗ C)+ and π+
CC⊕ (∧+(R4)⊗ C).

Proof. Let {e1, · · · , e4} denote an oriented orthonormal basis for R4 = R4 ⊗ 1. Notice
(Cl0(R4)⊗ C)+ has the basis{

π+
C , e1e2 + e3e4, e1e3 − e2e4, e1e4 + e2e3

}
so we see (Cl0(R4)⊗ C)+ 7→ π+

CC⊕ ∧+(R4)⊗ C. �

3. SPIN(N) AND SPINC(N)

Now we will define the Lie groups Spin(n) and Spinc(n). Let Cl×(Rn) denote the
multiplicative group of units in Cl(Rn). We define Pin(n) to be the subgroup of Cl×(Rn)
generated by elements v ∈ Rn ⊂ Cl(Rn) with < v, v >= 1. We define Spin(n) to be the
intersection of Pin(n) and Cl0(Rn).

Lemma 3.1. We have an isomorphism SU(2)×SU(2)→ Spin(4) where the splitting on
the left corresponds with the splitting Spin(4) = Spin(4)+ × Spin(4)−.

Proof. Recall we have algebra isomorphisms

H⊕H→ Cl(R3)→ Cl0(R4)

where the first map is the isomorphism from Lemma 1.5 and the second map is the iso-
morphism from Lemma 1.6.

If we identify H with R4, the group of unit quaternions is identified with S3 ⊂ R4

and is isomorphic to SU(2). Then by restricting the composition of the above maps to
S3 × S3 ⊂ H⊕H, we obtain an isomorphism

SU(2)× SU(2)→ Spin(4).

This composition preserves the desired splittings as each of the isomorphisms above
preserves its own corresponding splittings.

�

We define Spinc(n) to be the multiplicative group of units [Spin(n)×S1] ⊂ Cl(Rn)⊗C.
Observe by using the algebra isomorphism from Lemma 1.3 , we can consider Spinc(n)
to be a multiplicative group of units contained in Cl(C4).

Lemma 3.2. Spinc(n) ∼= Spin(n)× S1/{±(1, 1)}.

Proof. First we have the natural surjective group homomorphism

Spin(n)× S1 ↪→ [Spin(n)× S1].
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Elements of the kernel of this map are of form (c1, c−1) where c ∈ S1 ∩ R = {−1, 1}
AND c1 ∈ Spin(n). To see −1 ∈ Spin(n) = Pin(n) ∩ Cl0(Rn), first −1 ∈ Pin(n)
since e1e1 = −1 and −1 ∈ Cl0(Rn) since

α(−1) = α(e1e1) = α(e1)α(e1) = (−e1)(−e1) = e1e1 = −1.
Thus the kernel of our map is {±(1, 1)} so by the first isomorphism theorem,

Spinc(n) ∼= Spin(n)× S1/{±(1, 1)}.
�

From this Lemma and Lemma 3.1, we obtain an isomorphism

Spinc(4) ∼= SU(2)× SU(2)× S1/{±(I, I, 1)}.
Note that under this isomorphism, Spinc(4)+ ⊕ π−C ⊂ Cl(C4) is identified with the sub-
group [SU(2) × I × S1] ⊂ SU(2) × SU(2) × S1/{±(I, I, 1)} and Spinc(4)− ⊕ π+

C is
identified with the subgroup [I × SU(2)× S1].

Lemma 3.3. We have a group isomorphism

{(A,B) ∈ U(2)× U(2) | det(A) = det(B)} → Spinc(4) ⊂ Cl(C4)

where the splitting of {(A,B) ∈ U(2)× U(2) | det(A) = det(B)} corresponds with the
splitting Spinc(4) = Spinc(4)+ × Spinc(4)−.

Proof. First there is an isomorphism

{(A,B) ∈ U(2)× U(2) | det(A) = det(B)} → SU(2)× SU(2)× S1/{±(I, I, 1)}
defined by

(A,B) 7→ [(A

[
λ−1 0
0 λ−1

]
, B

[
λ−1 0
0 λ−1

]
, λ)]

where λ2 = detA. Note since

[(A,B, λ)] = [(−A,−B,−λ)] in SU(2)× SU(2)× S1/{±(I, I, 1)},
our map is the same for each of the two choices of λ and hence is well-defined.

The rest follows from the comments after Lemma 3.2.
�

The adjoint representation of Spin(n) is the map Ad : Spin(n) → Aut(Cl(Rn)) de-
fined by ϕ 7→ (y 7→ ϕyϕ−1). Recall

Pin(n) = {v1 · · · vr ∈ Cl(Rn) | vi ∈ Rn with < vi, vi >= 1}
so we see Adϕ(v) ∈ Rn for each ϕ ∈ Spin(n) ⊂ Pin(n) and v ∈ Rn. Hence we can
restrict the range to obtain a homomorphism Ad : Spin(n)→ GL(n) . In fact:
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Lemma 3.4. Ad induces a group homomorphism,

ξ : Spin(n)→ SO(n)

which is a double covering map. For n > 2, this is the universal double cover (up to
isomorphism). �

For Spinc(n), we can define a double-covering map of SO(n) × U(1) as follows. Let
ξc : Spinc(n) → SO(n) × U(1) be the homomorphism [(ϕ, λ)] 7→ (ξ(ϕ), λ2). Also
observe the map ξ : Spin(n) → SO(n) induces the homomorphism ξ : Spinc(n) →
SO(n) given by [(ϕ, λ)] 7→ ξ(ϕ). The kernel of this map is Z(Spinc(n)) ∼= S1.

Lemma 3.5.

Spinc(n) ∼= Spinc(n)×S1 S1 = Spinc(n)× S1/{(λ1, λ−1) | λ ∈ S1}

Proof. Define an isomorphism by ϕ 7→ [ϕ, 1]. To see this is onto observe [ϕ, λ] = [λϕ, 1]
for each ϕ ∈ Spinc(n) and λ ∈ S1. To see injectivity suppose [ϕ1, 1] = [ϕ2, 1] for
some ϕi ∈ Spinc(n). Then (ϕ1, 1) = (λϕ2, λ

−1) for some λ ∈ S1. Hence λ = 1 and
ϕ1 = ϕ2. �

4. SPINC STRUCTURES

Given an orientable manifold X , recall a choice of orientation and Riemannian metric
reduces the structure group of TX to SO(n) ⊂ GL(n) hence we obtain a frame bundle
PSO(n).

Definition 4.1. A Spinc-structure for an oriented Riemannian n-manifoldX is a principal
Spinc(n)-bundle PSpinc(n) → X together with a bundle map PSpinc(n) → PSO(n) that is
ξ : Spinc(n)→ SO(n) fibrewise.

The determinant line bundle of a Spinc-structure PSpinc(n) → PSO(n) is defined to be
the complex line bundle L = PSpinc(n) ×det C where det : Spinc(n) → U(1) is given by
[(ϕ, λ)] 7→ λ2.

Now we will restrict our attention to the four-dimensional case. Using the Clifford
multiplication map µ : Cl(C4)→Mat(C, 4) from Lemma 1.4, the complex spinor bundle
associated to µ is defined to be the complex vector bundle W = PSpinc(n) ×µ C4.

We may split W as W = W+ ⊕W− where

W± = PSpinc(4) ×µ± (C4)±

where µ±(•) = µ(π±C•). W+ is called the positive complex spinor bundle and W− is
called the negative complex spinor bundle. From Lemma 3.3, both W± have structure
group U(2).
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Now we will showH2(X;Z) has an action on Spinc(X) (the set of isomorphism classes
of Spinc-structures on X). For E ∈ H2(X;Z), let PU(1) denote the corresponding princi-
pal U(1)-bundle. We can define a new Spinc-structure ξ ⊗ E as follows. Consider

PSpinc(4) ×U(1) PU(1) = PSpinc(4) × PU(1)/ ∼

where (ϕ, y) ∼ (ϕ · λ, y · λ−1) for each λ ∈ U(1). On the left, U(1) is identified with
Z(Spinc(n)) in our usual way. From Lemma 3.5, this is a principal Spinc(n) bundle. We
can define our bundle map PSpinc(4) ×U(1) PU(1) → PSO(n) by [ϕ, y] 7→ ξ(ϕ).

Finally observe the induced map det : Spinc(n)×S1 S1 → S1 is given by [ϕ⊗ z, λ] 7→
z2λ2. We can write this as det = det1 det2 det2 where deti : Spin

c(n) ×S1 S1 → S1 are
given by det1([ϕ⊗ z, λ]) = z2 and det2([ϕ⊗ z, λ]) = λ. Hence

(PSpinc(4) ×U(1) PU(1))×det C = (PSpinc(4) ×U(1) PU(1))×det C⊗ C⊗ C
= ((PSpinc(4) ×U(1) PU(1))×det1 C)⊗

((PSpinc(4) ×U(1) PU(1))×det2 C)⊗
((PSpinc(4) ×U(1) PU(1))×det2 C)

= L⊗ E ⊗ E
So we see our action has the following effect on determinant line bundles: L 7→ L+ 2E.

Lemma 4.1. The above action is free and transitive. 2

5. CLIFFORD BUNDLES

Definition 5.1. Given a oriented Riemannian n-manifold X with frame bundle PSO(n),
we define the Clifford bundle of X as Cl(X) = PSO(n) ×SO(n) Cl(Rn). We also have the
complexified Clifford bundle Cl(X)⊗ C = PSO(n) ×SO(n) (Cl(Rn)⊗ C).

Let X be a oriented Riemannian n-manifold with frame bundle PSO(n) and Spinc-
structure ξ : PSpinc(n) → PSO(n).

Lemma 5.1. The map ξ : PSpinc(n) → PSO(n) induces a bundle isomorphism:

PSpinc(n) ×Ad Cl(Rn)⊗ C→ Cl(X)⊗ C

where Ad : Spinc(n)→ Aut(Cl(Rn)⊗ C) is given by

ϕ⊗ λ 7→ (y ⊗ v 7→ ϕyϕ−1 ⊗ λvλ−1 = ϕyϕ−1 ⊗ v).

Proof. Define a map

PSpinc(n) × Cl(Rn)⊗ C→ PSO(n) × Cl(Rn)⊗ C

by (y, v) 7→ (ξ(y), v). For ϕ ⊗ λ ∈ Spinc(n) and (y, v ⊗ z) ∈ PSpinc(n) × Cl(Rn) ⊗ C,
we have

(y · ϕ−1 ⊗ λ−1, ϕvϕ−1 ⊗ z) 7→ (ξ(y) · ξ(ϕ)−1, ξ(ϕ)v ⊗ z)
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so our map induces a bundle map

ξ′ : PSpinc(n) ×Ad Cl(R4)⊗ C→ Cl(X)⊗ C.

Surjectivity follows from the fact that ξ is onto. To see ξ′ is injective suppose

ξ′([y1, v1 ⊗ z1]) = ξ′([y2, v2 ⊗ z2]).
Then [(ξ(y1), v1 ⊗ z1)] = [(ξ(y2), v2 ⊗ z2)] and hence

(ξ(y1) · ξ(ϕ)−1, ξ(ϕ)v1 ⊗ z1) = (ξ(y2), v2 ⊗ z2)
for some ϕ⊗λ ∈ Spinc(n). Since Spinc(n) acts transitively on the fibres of PSpinc(n), we
have y1 · (ϕ′ ⊗ λ′)−1 = y2 for some ϕ′ ⊗ λ′ ∈ Spinc(4). Observe

ξ(y2) = ξ(y1 · (ϕ′ ⊗ λ′)−1) = ξ(y1) · ξ(ϕ′)−1

so since SO(n) acts freely on the fibres of PSO(n), it follows ξ(ϕ′) = ξ(ϕ) and hence

(y1 · (ϕ′ ⊗ λ′)−1, ξ(ϕ′)v1 ⊗ z1) = (y2, v2 ⊗ z2)
and therefore ξ′ is a bundle isomorphism.

�

Now additionally suppose X is 4-dimensional with complex spinor bundle W = W+⊕
W−. We’ll show Cl(X)⊗ C has an action called Clifford multiplication on W . Define a
map

C : PSpinc(4) × (Cl(C4)⊗ C4)→ PSpinc(4) × C4

by (q, ϕ ⊗ v) 7→ (q, ϕ · v) where · denotes Clifford multiplication. For g ∈ Spinc(4), we
have

C(qg−1, gϕg−1 ⊗ g · v) = (qg−1, gϕg−1 · g · v) = (qg−1, g · (ϕ · v))
so this induces a bundle map

C : (Cl(X)⊗ C)⊗W → W

which we will refer to as the Clifford multiplication map yet again.
Finally from Lemma 1.1, Cl(X) contains the subbundle

PSO(4) ×SO(4) R4 ⊂ PSO(4) ×SO(4) Cl(R4) = Cl(X)

which is canonically isomorphic to TX . It follows Cl(X) ⊗ C contains a subbundle
canonically isomorphic to TX⊗C. Thus using the canonical identification of tangent and
cotangent bundles, we can define a map

C : (T ∗X ⊗ C)⊗W → W.

As a result of Lemma 1.7 , we have the restrictions

C : (T ∗X ⊗ C)⊗W± → W∓.



12

REFERENCES

[1] Nicolas Ginoux. Spinc structures on manifolds.
[2] Robert Gompf and Andras I. Stipsicz. 4 Manifolds and Kirby Calculus.
[3] H. Blaine Lawson Jr. and Marie-Louise Michelsohn. Spin Geometry. Princeton University Press, Prince-

ton, New Jersey, 1989.
[4] John W. Morgan. The Seiberg-Witten Equations and Applications to the Topology of Four-Manifolds.

Princeton University Press, Princeton, New Jersey, 1996.
[5] Liviu I. Nicolaescu. Notes on seiberg-witten theory.


